Minimum—weight perfect matching for nonintrinsic distances on the line

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimum-weight perfect matching for non-intrinsic distances on the line

We consider a minimum-weight perfect matching problem on the line and establish a “bottom-up” recursion relation for weights of partial minimum-weight matchings.

متن کامل

On the inverse maximum perfect matching problem under the bottleneck-type Hamming distance

Given an undirected network G(V,A,c) and a perfect matching M of G, the inverse maximum perfect matching problem consists of modifying minimally the elements of c so that M becomes a maximum perfect matching with respect to the modified vector. In this article, we consider the inverse problem when the modifications are measured by the weighted bottleneck-type Hamming distance. We propose an alg...

متن کامل

On the Bipartite Unique Perfect Matching Problem

In this note, we give tighter bounds on the complexity of the bipartite unique perfect matching problem, bipartite-UPM. We show that the problem is in C=L and in NL , both subclasses of NC. We also consider the (unary) weighted version of the problem. We show that testing uniqueness of the minimum-weight perfect matching problem for bipartite graphs is in L= and in NL. Furthermore, we show that...

متن کامل

On Inverse Problems of Optimum Perfect Matching

As far as we know, for most polynomially solvable network optimization problems, their inverse problems under l1 or l∞ norm have been studied, except the inverse maximum-weight matching problem in non-bipartite networks. In this paper we discuss the inverse problem of maximum-weight perfect matching in a non-bipartite network under l1 and l∞ norms. It has been proved that the inverse maximum-we...

متن کامل

On Perfect Matchings in Matching Covered Graphs

Let G be a matching-covered graph, i.e., every edge is contained in a perfect matching. An edge subsetX ofG is feasible if there exists two perfect matchingsM1 andM2 such that |M1∩X| 6≡ |M2∩X| (mod 2). Lukot’ka and Rollová proved that an edge subset X of a regular bipartite graph is not feasible if and only if X is switching-equivalent to ∅, and they further ask whether a non-feasible set of a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Sciences

سال: 2012

ISSN: 1072-3374,1573-8795

DOI: 10.1007/s10958-012-0714-6